Coppicing evaluation in the Southeast U.S. to determine harvesting methods for bioenergy production

Auburn University, Department of Forestry and Wildlife Sciences Rafael Santiago – Master's student Tom Gallagher – Professor Mathew Smidt - Professor Dana Mitchell – Project leader USFS

U.S. Energy consumption (2014): 98.3 Quadrillion BTU

U.S. Renewable Consumption: 9.6 Quadrillion BTU

Source: NREL 2014

Short rotation woody crops (SRWC)

Plantations established to grow lignocellulosic material (wood) for energy production purposes.

Intensively-managed plantations

Rotations can be shortened to as little as 3 years due to the ability to coppice. (U.S. Department of Energy, 2011).

Coppice ability:

Challenge: Harvesting multi-stem trees:

- Generally time consuming
- Current absence of specialized machinery.

The objective of this study is to monitor coppicing development of SRWC in the southeastern United States.

Specific goals:

To determine whether stem crowding and growth of SRWC are affected by season of harvesting.

To examine how clump dimension could affect subsequent harvesting operations.

To examine the potential differences on the final yield of multistem trees versus single-stem coppice trees.

Methods:

Experimental sites:

Eucalyptus urograndis Eucalyptus

Populus deltoides Cottonwood

Site description:

Eucalyptus (Florida):

- Density: 1820/ha
- Size: 0.8 ha ~2 acres
- Age of trees when harvested: 2 years
- Harvesting dates:
 (Winter plot): December,2013;
 (Summer plot): May, 2014

Site description:

Cottonwood (Arkansas):

- Density: 2600/ha
- Size: 0.8 ha ~2 acres
- Age of trees when harvested: 3 years
- Harvesting dates:
 (Winter plot): March, 2014;
 (Summer plot): June, 2014

Evaluation schedule: Growing degree days (GDD)

Assessments	Location	Species	GDD ≈ Months (summer plots)	GDD ≈ Months (winter plots)
1 st	Florida	E. urograndis	$5460 \approx 6$	$2935 \approx 5$
Evaluation —	Arkansas	P. deltoides	$3760 \approx 7$	4440 pprox 7
2 nd	Florida	E. urograndis	$17,\!630 \approx 24$	$17,\!190 \approx 24$
Evaluation	Arkansas	P. deltoides	11,073 ≈ 23	11,201 ≈ 22

Clump Dimension Analysis

- Data collected during second evaluations: 2-yearold
- 2-dimensional ruler (i.e. X & Y) for data collection
- Each dot represent one stem growing from the same stump.

Grabbing arm limitation:

Companies consulted:

- FECON
- DFM

Specifications:

- Length: 76 cm; ~ 30 in
- Height: 1.5 m above ground

Threshold: 76 cm

Data collection:

Growth parameters: Height and DBH

Stump survival

Stem crowding and mortality of stems

Stump damage and stump diameter

Stump mortality

Eucalyptus urograndis:

Winter harvest ~0%/montality			y Summ	er harve	est _{~0%} mortality
		1			1
Age	Live stumps	Live stems	Age	Live stumps	Live stems
Harvesting	431	431	Harvesting	435	435
6-month- old	395	1673	6-month- old	331	1515
2-year-old	393	1042	2-year-old	329	835

Stump mortality **Populus deltoides:** Summer harvest Winter harvest ~5%/mortalityy ~0%mortality Live stems Live stems Age Live Live Age stumps stumps Harvesting 401 425 401 Harvesting 425 386 207 6-month-1047 6-month-566 old old 2-year-old 383 196 497 2-year-old 288

Eucalyptus urograndis:

Winter harvest plot

Summer harvest plot

Stem crowding

Populus deltoides:

Winter harvest plot

Clump dimension

Eucalyptus urograndis:

Winter harvest plot

Summer harvest plot

Operation	Distance apart (cm)
Max	135
Median	33
Mean	35
Mode	25

Challenge				
Criteria	Stump counting			
> 76 cm	4			
Percentage	1%			

Operation	Distance apart (cm)
Max	118
Median	33
Mean	34
Mode	25

Challenge					
Criteria	Stump counting				
> 76 cm	4				
Percentage	1%				

Clump dimension

Populus deltoides:

Winter harvest plot

Operation	Distance apart (cm)
Max	69
Median	23
Mean	27
Mode	23

Challenge				
Criteria	Stump counting			
> 76 cm	0			
Percentage	0%			

Summer harvest plot

Operation	Distance apart (cm)
Max	116
Median	30
Mean	32
Mode	30

Challenge					
Criteria	Stump counting				
> 76 cm	2				
Percentage	1%				

Growth Parameters & Yield

DBH and height means of stems by harvesting season at age 2:

Species	Harvesting season	Total nº stems	DBH (cm)	Height (m)	SD. DBH	SD. Height
Eurographic	Summer	835	5.50 ± 0.16	10.94 ± 0.19	2.40	2.85
L. GIOGIANUIS	Winter	1042	5.73 ± 0.13	.73 ± 0.13 12.7 ± 0.19 2.20	2.20	3.16
P. deltoides	Summer	288	2.01 ± 0.15	3.70 ± 0.14	1.27	1.23
	Winter	497	3.03 ± 0.10	5.27 ± 0.12	1.24	1.38

*CI of means generated at a = 0.05

Growth Parameters & Yield

Yield results per species and season of harvesting:

Species	Harvesting season	Final yield (m ³ /hectare)	Mean (m ³ /stem)	Mean (m ³ /stump)
Eurographic	Summer	32.82	0.0159 ± 0.0009	0.0403 ± 0.0029
E. UIOGIATIOIS	Winter	48.19	0.0187 ± 0.0008	0.0496 ± 0.0026
P. deltoides	Summer	1.68	0.0025 ± 0.0001	0.0036 ± 0.0003
	Winter	4.67	0.0037 ± 0.0001	0.0049 ± 0.0002

*CI of means generated at a = 0.05

Yield at stump level

Least Squares Means for effect stems_stump Pr > t for H0: LSMean(i)=LSMean(j) Dependent Variable: Volume/stump					
i/j	1	2	3	4	5
1		0.0002	<.0001	<.0001	<.0001
2	0.0002		<.0001	<.0001	<.0001
3	<.0001	<.0001		0.0001	0.0005
4	<.0001	<.0001	0.0001		0.1678
5	<.0001	<.0001	0.0005	0.1678	

Yield at stump level

P. deltoides

Least Squares Means for effect stems_stump Pr > t for H0: LSMean(i)=LSMean(j) Dependent Variable: Volume/stump					
i/j	1	2	3	4	
1		<.0001	<.0001	<.0001	
2	<.0001		<.0001	<.0001	
3	<.0001	<.0001		0.0015	
4	<.0001	<.0001	0.0015		

Yield at stem level

Least Squares Means for effect stems_stump Pr > t for H0: LSMean(i)=LSMean(j) Dependent Variable: Volume/stem					
i/j	1	2	3	4	5
1		0.0002	<.0001	<.0001	0.0095
2	0.0002		0.0051	0.0058	0.5545
3	<.0001	0.0051		0.9322	0.9918
4	<.0001	0.0058	0.9322		1
5	0.0095	0.5545	0.9918	1	

Yield at stem level

Least Squares Means for effect stems_stump Pr > t for H0: LSMean(i)=LSMean(j) Dependent Variable: Volume/stump					
i/j	1	2	3	4	
1		0.7595	0.8956	0.8075	
2	0.7595		0.9961	0.9464	
3	0.8956	0.9961		0.9871	
4	0.8075	0.9464	0.9871		

Once successfully coppiced, stump mortality is minimal.

Higher above ground volume in winter plots of both species.

Season of harvest did not affect stem crowding nor clump dimension.

With both species and seasons of harvest we noted that harvesting multi-stem coppiced trees with current technology is feasible.

Yield results showed that the accumulation of stems per stump will increase the final volume, without necessarily decreasing the size of the stems.

Acknowledgments:

Integrated Biomass Supply Systems

United States Department of Agriculture National Institute of Food and Agriculture

Questions:

FORESTRY AND WILDLIFE SCIENCES

