Cut-to-Length Thinning in California's Redwood Forests: Productivity, Cost, Soil Impacts, and Residual Stand Damage

Kigwang Baek, Kyungrok Hwang, Han-Sup Han

Humboldt State University

Department of Forestry and Wildlife Resources, Arcata, CA, United States

COFE, Bangor, Maine,

2, August 2017

Growing interest in redwood thinning using a CTL system...

Individual

Cut-To-Length Method

Harvester

Forwarder

Study Objectives

- Determine productivity and cost of a CTL commercial thinning operation in redwood stands
- ✓ Evaluate soil impacts during winter CTL thinning operations.
 bulk density (BD)
- ✓ Examine residual stand damage: individual vs. clump trees.

Study Area

- 10.1 ha on industrial timberland
- Watercourses and Lake Protection Zones (WLPZ)
- 25-30 years old trees commercially thinned

	Pre-Thinning	Post-Thinning
Avg. DBH (cm)	20	23
Avg #stems/clump	6	3
Avg. basal area (m²/ha)	99	40
Stand density (tph ^a)	2393	769
Species composition (%)		
redwood	77	79
red alder	17	15
Douglas-fir	5	4
Sitka spruce	1	2

^a trees (>5cm in DBH) per ha

Detailed Time and Motion Study

Data Collection: Bulk Density

Data Collection: Stand Damage

- Removal of the bark down to cambial layer, exposing sapwood
- Systematic plot sampling
- Data collection
 - Number of trees damaged
 - Scar width and length

Width

Results

Harvester

Stump-To-Truck Cost (\$/m³)

	Machine Cost (\$/PMH ^a)	Hourly Production (m ³ /PMH)	Thinning Cost (\$/m³)	Percent of Total Cost (%)		
Harvester	230.9	27.7	8.3	42.4		
Forwarder	183.6	22.4	8.2	41.7		
Loader (Forwarder)	183.6	58.9	3.1	15.9		
Total	598.1		19.7	100		
^a productive machine hour						

Bulk Density (BD)

Soil depth (cm)	BD on the track (g/cm ³)	BD Desirable (g/cm ³)*	BD affecting root growth (g/cm ³)*	BD restricting root growth (g/cm ³)*
0-5	0.83	<1.30	1.60	>1.75
10-15	1.08	<1 40	1 55	>1 65
20-25	1.13		1.00	71.00

*Pierce et al. (1983)

Scar Size and % Damage

Scar width		Scar length			Minimum scar width (cm)	% of damaged trees (%)	
						None	16.2
Individual Clump (cm) (cm) p-value	p-value*	ie* Individual Clum (cm) (cm	Clump	p-value*	> 5	13.9	
			(cm)		> 10	7.6	
8.1 9.1	0.1611 16.7	16 7	28.1	0.0001	> 15	3.2	
		10.7			> 20	1.7	

- Fungal decay is better correlated with scar width rather than length (Wallis and Morrison, 1975).
- Scars less than 10cm in width were closed within 10 years with no decay developed. (Han and Kellogg, 2000).

Conclusion

- The cost of thinning young redwood stands using a CTL system was comparable, as observed in other conifer stands.
- Productivity of CTL thinning in redwood forest was affected by tree type (individual vs. clump).
- Soil bulk density was increased, but the severity of soil compaction was not detrimental to tree growth.
- The amount of damage (>10cm in scar width) to residual trees was 7.6%.

⇒ Winter thinning of redwood forests using a CTL system appears to be operationally feasible.

Questions?

```
Bulk Density (BD)
```


Water Infiltration Rate (WIR)

Measurement	Soil depth (cm)	Reference	Center	Track	p-value*
WIR (cm/hr)	0-5	1.25 ± 1.48^{a}	1.87 ± 2.78^{a}	1.17±1.43 ^a	0.6579

- An increase in bulk density did not always associate with a significant decrease in water infiltration (Aust et al.1992).
- The lack of forest residues and bare soil by high intensity rainfalls are factors of soil erosion (Franzluebbers 2001).

Data Collection: Water Infiltration Rate

mini-disc infiltrometer