Forest Bioenergy and Biofuels Integration:

Sustainability, Energy Balance and Emissions from Forest Restoration in the Southern Rocky Mountains

Beth Dodson (UM), John Goodburn (UM), Lucas Townsend (UM), Graham Whoorsly-Hood (UM), Mike Battaglia (USDAFS – RMRS), Nate Anderson (USDAFS – RMRS), Ching-Hsun Huang (NAU), Dan Loeffler (UM)

Overview

- Project goals
- Methods
- Early results/observations

ForBio Southwest

- Project Goals:
 - How can biomass from restoration be harvested and processed most efficiently and effectively;
 - How does biomass harvest affect forest ecosystems; and
 - How does harvest and use impact local air quality, greenhouse gas emissions and carbon balance?

Operations Research

- Summer 2017
 - Spend at least 10 operational days on each of 5 "typical" operations in the Southern Rocky Mountains
 - Estimate current production rates and costs for integrated forest restoration treatments
 - Work with operators on project areas they already have under contract
- January 2018
 - Return to operators with results and suggestions for improvements, including:
 - Changes to increase efficiency/lower costs of production
 - Changes to improve environmental performance
- Summer 2018
 - Return to same 5 operations and observe "improved" harvest operations
- Summer 2019
 - Report results

Forest Ecology

- For all operations research sites:
 - Pre-harvest assessment of:
 - Overstory vegetation
 - Understory vegetation
 - Fuels
 - Soil density
 - Disturbance history
 - Post-harvest assessment one year posttreatment (may include a burn treatment)
- Retrospective sites
 - Approximately 5 forest restoration activities completed 5-10 years prior near each active operation
 - Same field protocol is used as in pre- and post-treatment sites
- Control sites
 - At least one control site near each active operation

Analysis of Tradeoffs

• Non-market analysis of public health benefits of using forest biomass for energy production versus "standard" fossil fuels

Summer 2017 Observations

- June 2 operations in northern Arizona
 - "Standard"-sized mechanical whole-tree
 - Large mechanical whole-tree
- July 2 operations in northern New Mexico
 - Mechanical whole-tree
 - Harvester/skidder
- August southern Colorado
 - Mechanical whole-tree

AZ – "Standard" Mechanical Whole-Tree

- Rubber-tired feller-buncher
- Rubber-tired grapple skidder
- Dangle-head processor at landing
- Log loader and double-bunk straight log trucks
- Grinding of residuals, 54' chip vans

AZ – "Standard" Mechanical Whole-Tree

- Rubber-tired feller-buncher
- Rubber-tired grapple skidder
- Dangle-head processor at landing
 - 4.5"-16"x16' sawlogs: hue saw sawmill producing green dimensional lumber for the Mexican market
 - >16"x16' sawlogs: sawmill producing pallet stock and green dimensional lumber for the Mexican market
 - 2'-4.5" diam logs plus cull logs up to 16': shipped as logs to pellet manufacturer
- Log loader and double-bunk straight log trucks
- Grinding of residuals, 54' chip vans

AZ – "Standard" Mechanical Whole-Tree

- Rubber-tired feller-buncher
- Rubber-tired grapple skidder
- Dangle-head processor at landing
- Log loader and double-bunk straight log trucks
- Grinding of residuals, 54' chip vans

Observations

- Appears to be most efficient crew studied
- Issues maintaining reliable truck drivers

AZ – Large Mechanical Whole-Tree

• (3) Rubber-tired hot saws

- (2) "Large" rubber-tired grapple skidders
 Skidding of sawlogs
- (2) "Small" rubber-tired grapple skidders
 Skidding of "PCT" piles (non-sawlog)
- (1) Log loader for sorting at the landing
- (2) Dangle-head processors at landing
 - >16"x16' sawlogs: railroad tie plant
 - 4.5"-16"x16' sawlogs: hue saw sawmill producing green dimensional lumber for the Mexican market
- Log loader and double-bunk straight log trucks
- Grinder and 54' chip vans

AZ – Large Mechanical Whole-Tree

• (3) Rubber-tired hot saws

- (2) "Large" rubber-tired grapple skidders
 Skidding of sawlogs
- (2) "Small" rubber-tired grapple skidders
 Skidding of "PCT" piles (non-sawlog)
- (1) Log loader for sorting at the landing
- (2) Dangle-head processors at landing
 - >16"x16' sawlogs: railroad tie plant
 - 4.5"-16"x16' sawlogs: hue saw sawmill producing green dimensional lumber for the Mexican market
- Log loader and double-bunk straight log trucks
- Grinder and 54' chip vans

Resulting Analysis Questions

- At what point does it pay to separate the processing and skidding?
- Is it beneficial to separate skidding of logs and non-merch?
- Does Saturday production pay?
- Would a production bonus/incentive program increase worker productivity and efficiency?
- Would cross training improve productivity and efficiency?

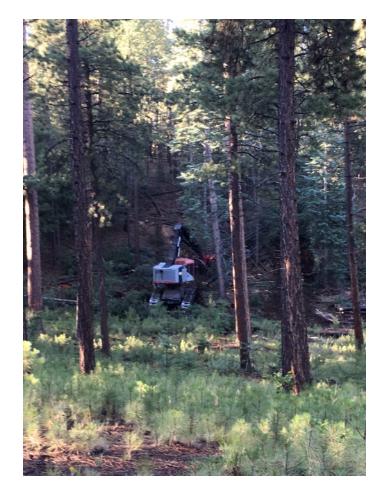
Observations

- "Buddy falling"
- Span-of-control issues
- Inefficient machine operators (grinding and skidding in particular)

NM – Harvester/Skidder

- Harvester for felling and processing in-woods
 - >4.5"x>8' (2' multiples)
- Rubber-tired grapple skidder
- Dangle-head processor for loading
- (2) stinger-steered long-log trucks, one straight truck for long-logs, one flatbed with double log bunks

Analysis Questions


- How much is slash dispersal for later prescribed burning costing this operation (whole-tree versus log-length)?
- How much is loading with a dangle-head processor costing this operation?
- Would some degree of sorting in the woods benefit efficiency?
- Should this operation switch to a hot saw or use two harvesters?

Observations

- Skidder adjusted production based on available logs
- Mechanical break-downs a significant issue
- Loading involved a great deal of time sorting logs

NM – Mechanical Whole-Tree

- Tracked, self-leveling hot saw
- Rubber-tired grapple skidder
- Dangle-head processor operating both at landing and in woods
 - >2.5"x>8' (25', 27', 29' preferred) shipped to two integrated mill facilities (pellets, vegas, green dimensional lumber, paneling, post and pole, firewood); other small sawmill operations
- (2) Prentice truck-mounted loaders with (2) stinger-steered log trucks; (1) self-loading log truck

NM – Mechanical Whole-Tree

- Tracked, self-leveling hot saw
- Rubber-tired grapple skidder
- Dangle-head processor operating both at landing and in woods
 - >2.5"x>8' (25', 27', 29' preferred) shipped to two integrated mill facilities (pellets, vegas, green dimensional lumber, paneling, post and pole, firewood); other small sawmill operations
- (2) Prentice truck-mounted loaders with (2) stinger-steered log trucks; (1) self-loading log truck

Analysis Questions

• Does in-woods processing from decks (and subsequent re-skidding of logs) make up for reduced slash dispersal cost?

Observations

- Truck-mounted loaders reduced landing configuration options, reducing processor production
- Inexperienced operators confound results
- Mill demand limited in-woods production

CO – Mechanical Whole-Tree

• TBD....

Early Observations

- Markets are currently limiting production
- Most operations are comparably small and consist of a single side $% \mathcal{A} = \mathcal{A} = \mathcal{A}$
- All operations studied utilized clumpy-gappy silviculture and stewardship contracting authority
- Three out of four operations: incremental improvements to work flow and procedures

Questions?

 This project is supported by the Biomass Research and Development Initiative of the U.S. Department of Agriculture, National Institute of Food and Agriculture, competitive award no. 2016-10008-25636.

