Stream Smart Road Crossings

Designing roads for fish, floods and foxes

Plunging Flow & Leaping

Flowlines - After Constriction

The Problem

Hydraulically Efficient culverts can have unintended and adverse consequences:

- Crossing narrower than natural channel
- Upstream sediment deposition
- Increased water velocity and downstream scour
- Risks of plugging from wood and debris

Site 7588 – Before Restoration

Site 7588 – After Restoration *

* Bridge composed of timber on steel beams. Revegetation to follow.

Inlet

Outlet

Design Criteria

Span the stream

Set elevation right

Slope matches stream

Substrate in the crossing

The Golden Rule: Let the stream act like a stream

Field Surveys

Getting a good REFERENCE REACH is critical! Short surveys mean failed culverts!

Field Surveys

Longitudinal Profile

Used to find correct elevation and slope from a REFERENCE REACH

Field Surveys

X-Section from REFERENCE REACH

Step 2: Field Surveys

Pebble Count

Substrate Characterization

Wolman Pebble Count

Design Criteria

Span the stream

Set elevation right

Slope matches stream

Substrate in the crossing

The Golden Rule: Let the stream act like a stream

Span the stream

Proposed Culvert Inlet Detail

Design--Span

Real World – Blanchard Opps!!

2008

Design--Span

Design Rules of Thumb (4 S's)

Span the stream

Set elevation right:

 Use Long Profile to calculate Max Scour Depth and set footer and invert elevations

Slope matches stream Substrate in the crossing

Design--Elevation

Elevation problem indicators

Step 3: Design--Elevation

Longitundal Profile: Myra Road/Drew Brook Existing Crossing

A stream channel rediscovered!

Design--Elevation

Design Rules of Thumb (4 S's)

- Span the stream
- Set elevation right
- **Slope matches stream**
- Use reference reach
- to calculate slope of new crossing
 Substrate in the crossing

Table 5. Slope Segment Table

88		Elevation	Segment	Gradient	% gradient difference between successive	Maximum residual	Number of intermediate grade	Average distance between grade					
	Segment	Change	Length	(ft/ft) or	segments.	pool depth.	controls.	controls.					
84		(ft or m)	(ft or m)	(m/m)	(%)	(ft or m)		(ft or m)	Distance between grade controls (ft or m)>>				
	А	0.19	22.7	0.00837		No_Pools	0	22.7	22.7				
	В	-0.09	50	0.0018	79%	1.45	0	50	50				
80	С	2.3	376.1	0.00612	240%	No_Pools	4	75.22	138.4	85.7	52	60	40
	D[2]	0.8	70	0.0114	87%	0.4	1	34.99	60	10			
76 -													
	9 39	69	99	129 159	189	219	249 279	309	339	369	399 429	459	
						Thawleg D	istance (feet)						

Design--Slope

Design Rules of Thumb (4 S's)

Span the stream

Set elevation right

Slope matches stream

Substrate in the crossing

• Use REFERENCE REACH to calculate substrate distribution and develop a stream bed material mix.

Design—Substrate

Check slope: Seamless inlets and outlets

Substrate in the crossing

of particles

cumulative %

Riffle Surface Pebble Count, Baker Brook

percent finer than

Design—Substrate

pre-restoration

hoto by K. Muell

2009 si/

post-restoration

This IS what it should look like when your done!

New channel cross section

Comparison of Costs Over 50 Years: 72"CMP vs Stream Simulation Alternatives

Close to 50 percent of culverts shows positive fiscal benefits when replaced with ecological designed crossings.

Conservation Leverage:

Ecological design saves the most money in headwaters!!

Installation

Permits

- In stream work window (July 15-Sept 30)
- Controlling the water during construction
- Sediment control
- Embedding
- Bedrock/Clay– do you need Geotech borings
- Road Control
- Complicated legacy effects
- When you can't find channel
- Tidal streams

Setting the structure

Controlling Water

Installation

Hydrology & Hydraulics Determine Flow Capacity

• What volume of flow are we allowing for?

25-, 50-, 100- or 150-year storm event?

Can our structure pass this flow without creating too much turbulence or overtopping? What is the Slope, Roughness & Tailwater Geometry?

Hydrology

A

Streamflow Statistics

Manhage

http://streamstats.usgs.gov

Step 2: StreamStats delineates basin

2-year through 500-year floods

Average annual & monthly streamflows

Flumbs

- 7-day, 10-year low flow (7Q10)
- Regional lowflows
- Regional hydraulic geometry

Statistic	Value	Unit	Prediction Error (percent)
PK2	89.6	ft ³ /s	35
PK5	156	ft ³ /s	36
PK10	210	ft ³ /s	37
PK25	287	ft ³ /s	39
PK50	350	ft ³ /s	40
PK100	420	ft ³ /s	41
PK500	603	ft ³ /s	45

Step 3:

StreamStats outputs flow statistics

Hydrology

Step 6: Hydraulic Modeling

Profile of culvert, inlet control, inlet not submerged, and projecting inlet and outlet

Hydraulic Modeling

HY-8 Output

Hydraulic Analysis:

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
100.00	100.00	95.67	1.847	2.039	3-M1t	1.265	1.177	1.881	1.881	3.855	5.945
215.00	215.00	97.01	3.104	3.377	3-M1t	2.058	1.959	2.545	2.545	6.159	7.172
Hydraulic Modeling											

Restoring River Processes Benefits All

Including our road budgets!

Which can lead to fill failure and large sediment inputs.

EXHIBIT ES-2. SUMMARY OF CULVERT REPLACEMENT CASE STUDY FINDINGS

с	ATEGORY	DINGLE ROAD	HILL STREET	DRIFT ROAD	
Background	Culvert Owner	Town of Worthington	Town of Raynham	Town of Westport	
on Project	Year of Culvert Upgrade	2008	2010	2012	
Costs	Upgrade Cost	\$370,000	\$440,000	\$230,000	
	Cost to Owner (percent of total costs)	\$56,000 (15%)	\$72,000 (17%)	\$45,000 (20%)	
	Other Funding Sources (percent of total costs)	DER: \$61,000 (16%) Other Conservation Partners: \$160,000 (42%) Other Sources: \$98,000 (26%)	Chapter 90: \$340,000 (77%) MORE Grant: \$27,000 (6%)	FEMA: \$180,000 (80%)	
	Long-term Cost Savings Relative to Replacement In-Kind	\$180,000	\$(41,000)	\$520,000	
Division of Ecological Restoration	Owner Savings Relative to Costs of Culvert Repair and Maintenance ¹	\$500,000	\$220,000 to \$320,000	\$560,000 to \$700,000	

Application: Stream Simulation Design

Culvert is wider than adjacent channel with a natural bottom and maintains Ecological Connectivity.

Hydraulic variables used in stream simulation design:

- Channel width
- Shear Stress
- Darcy Friction Factor
- Energy Dissipation Factor
- Stream Power
- Composite Roughness

Eastern brook trout

1. Inventory & Prioritize barriers

2. Assess habitat (presence/absence)

3. Share technical support

4. Implement projects

5. Track and Share Lessons

©Taomeister, flickr Creative Commons

☆ ▼ C 8 ▼ Google ← Imapserver.maine.gov/streamviewer/index.html 🙆 Most Visited 🔮 Getting Started 脑 Latest Headlines 🗍 Connect 🗍 Deltek Timesheet Maine Stream Habitat Viewer Maine Stream Connectivity Work Group and Maine Office of GIS Partners Home Use the Viewer How To Contacts About Barriers Training **Barrier Surveys** Abbot R. 31 🎤 Build a Ouery 🛛 🖌 Bird's Eve View 🛛 🚗 Google Street View 📼 Measure 🔚 Measure Area 🕕 Identify 🖉 Clear Selection Ð Q Catalog Monson A Potential Barrier 2608 Natural Barriers ۵ 🏈 Impassable Waterfalls 15 Blanchard Twp ۵ 🏈 🍘 High Interest Habitats Atlantic Salmon Alewife Documented Alewife Ponds and Streams ۵ 🕢 🍥 ✓ Active Inactive Active Inactive Abbot 🚞 Potential D0028 Sea-Run Rainbow Smelt 🕽 2671_Outlet.JPG (JPEG Image, 480... 💶 💷 💻 🌌 Wild Eastern Brook Trout Tidal Marshes mapserver.maine.gov/streamviewer/SitePhotos/ Supplemental Habitat Layers **Base Layers** ✓ State and County Boundaries Kingsbury Plt ► State Lines 2671 orcester=Hw Bear Brook N County Lines Town Boundaries and Names ✓ County Names Transportation Water Features Watersheds Forest Lands

Barriers/Potential Barriers Across Surveyed Watersheds

