STEEP SLOPE LOGGING RESEARCH AT OSU

Eye movement tracking to grapple yarding, collaboration for a safer work environment.

Presenter: Preston Green

1Oregon State University College of Forestry
Research Team Acknowledgement

Francisca Belart1, Robert Crawford1, Woodam Chung1, Tamara Cushing1, John Garland3, Laurel Kincl2, Ben Leshchinsky1, John Sessions1, Jeff Wimer1

1OSU College of Forestry, 2OSU Public Health and Human Sciences, 3Garland & Associates
Steep Slope Harvesting

- Research Introduction
- Research Goals
- Methodology Overview
- Results to Date
- Future Plans
Research Introduction & Goals

• Motivations:
 • Logging is “difficult, dirty, dangerous, and declining” (Garland, 2012a)
 • Logging is the first step in an industry that generates over $5.2 billion in revenue for Oregon alone (Rasmussen et al., 2012)
 • Workforce, mechanization, timber, political environment are all drivers of change

• Research Arms & Goals:
 • Assessing practical and physiological response of logging workers
 • Assessing environmental impacts of various steep-slope harvesting systems
 • Observe harvesting and yarding productivity to develop regression-based cost and productivity models
Motivations

Civilian occupations with high fatal work injury rates, 2015

- Total fatal work injuries = 4,836
- All-worker fatal injury rate = 3.4

- Logging workers: 67
 - Fatal work injury rate = 132.7
- Fishers and related fishing workers: 23
 - Fatal work injury rate = 54.8
- Aircraft pilots and flight engineers: 57
 - Fatal work injury rate = 40.4
- Roofers: 75
 - Fatal work injury rate = 39.7
- Refuse and recyclable material collectors: 33
 - Fatal work injury rate = 38.8
- Structural iron and steel workers: 17
 - Fatal work injury rate = 29.8
- Driver/sales workers and truck drivers: 885
 - Fatal work injury rate = 24.3
- Farmers, ranchers, and other agricultural managers: 252
 - Fatal work injury rate = 22.0
- Electrical power-line installers and repairers: 26
 - Fatal work injury rate = 20.5
- First-line supervisors of landscaping, lawn service, and groundskeeping workers: 38
 - Fatal work injury rate = 18.1

In 2015, fatal work injury rates were high for logging workers and fishers and related fishing workers. Driver/sales workers and truck drivers incurred the greatest number of fatal injuries.
Motivations

• Logging generates billions in revenue for Oregon alone.
• Drivers of change:
 • Workforce: good employees harder to find, younger employees not looking for a career in the woods
 • Mechanization: other parts of the world are advancing in this area, big changes have been taking place
 • Timber: size (DBH) has decreased over time, requiring adaptations to logging systems to remain competitive
Methodology, Practical & Physiological Response of Operator

- Operators will be wired!
- Measurement of stress, fatigue, operator attentiveness through:
 - Heart rate monitor
 - Camera recording eye movements
 - Camera recording operator
 - Measurement of respiration (Fitbit-like device)
 - Periodic interviews in response to situations
Disclaimer

Mention or depiction of machines or trade names does not constitute endorsement by Oregon State University or any agency of the federal government.
Wiring Operators

Camera watches and tracks the operators pupils, and relates that to what the operator sees in front of him. Camera watching pupils, camera looking forward.

Other medical-grade devices similar to a Fitbit to track vital signs and galvanic skin responses.
Wired Operator
Methodology, Environmental Impacts

- Pressure monitors buried underneath tracks
 - Non-tethered tests with Tigercat 855 and CAT 552 at OSU on different slopes and boom positions
 - Tethered test with CAT 552 with C&C Logging in western Washington on different slopes, boom positions, and cable tension
- Accelerometers to measure movement of machine
- Bulk density to measure compaction
- Vane shear samples to measure undrained shear strength of soil
- Slash mat transects to capture effect of slash mat on compaction and rutting
- Rut depth
- Soil displacement (through ocular observation)
Field Testing

August 4, 2017 COFE 2017 Annual Meeting
Bangor, ME
Methodology, Harvesting & Yarding Productivity

- Detailed time study of cable-assisted harvester & forwarder, grapple yarding, conventional yarding (other systems planned for future research) via paper & stopwatch and video recording.
- GPS tracking of carriages to determine precise turn distances
- Data log from harvester head to capture tree size and detailed cutting log, done by measuring and pre-marking, otherwise.
Results to Date
Practical & Physiological Response of Operator
Environmental Impacts
No Cable Tension!

Facing Downhill, Boom In

Facing Uphill, Boom In

Facing Downhill, Boom Out

Facing Uphill, Boom Out

High pressure at base, increases likelihood of sliding

Low pressure, little contact with ground

Graph showing pressure (PSI) with different labels indicating conditions:
- Bottom
- Mid-Bottom
- Mid-Top
- Top

August 4, 2017 COFE 2017 Annual Meeting
Bangor, ME
Facing Downhill, Boom In

Facing Uphill, Boom In

Facing Uphill, Boom Out

Facing Downhill, Boom Out

Front pressures effectively reduced

Rear pressures increase, tracks are fully engaged

9,000 lbs. Cable Tension

Pressure (PSI)

August 4, 2017 COFE 2017 Annual Meeting Bangor, ME
20,000 lbs. Cable Tension

Facing Downhill, Boom In
Facing Uphill, Boom In
Facing Uphill, Boom Out
Facing Downhill, Boom Out

August 4, 2017 COFE 2017 Annual Meeting
Bangor, ME
What does this mean?

• Tracks are better engaged throughout their entire length due to cable tensions (better mobility)
• Ground pressure decrease (less soil disturbance, more stability)
• Downhill operation is improved by reducing maximum track pressures.
• Uphill operation is improved by better distribution of ground pressures.
What about compaction?
Harvester – No Tether Tension

Slope (%)
- 50%
- 30%
- 40%

Dry Density (kg/m³)

Moisture Content (%)
Productivity & Cost

• Conventional yarding and grapple yarding on the same setting
• Madill 071 w/Boman Mark V carriage and Eagle Claw grapple
• Clearcut, Douglas fir age 50-55 (est.), 18.24” ave. DBH, 93.3’ ave. height
• Yarding from pre-bunched decks of logs
• Independent variables:
 • Outhaul distance
 • Number of stems
Harvest Unit

August 4, 2017

COFE 2017 Annual Meeting
Bangor, ME
Productivity and Cost Comparison

Cable Yarding
- AYD: 1,129 feet
- Without delay: 17.38 MBF/Hr.
- With delay: 15.52 MBF/Hr.
- Cost/SMH: $407.51
- Cost/PMH: $611.95

Grapple Yarding
- AYD: 591 feet
- Without delay: 16.89 MBF/Hr.
- With delay: 13.98 MBF/Hr.
- Cost/SMH: $491.44
- Cost/PMH: $741.07
Cable Yarding vs. Grapple Yarding

Plot of DFCT Given Outhaul Distance and Number of Stems

DFCT (min.) = 1.94515 + 0.00104797*Outhaul_Distance + 0.0753253*#Stems

R-squared (adj. for d.f.) = 55.7425 %

DFCT (min.) = 3.3581 - 0.132014*#Stems

R-squared (adj. for d.f.) = 10.6615 %

August 4, 2017

COFE 2017 Annual Meeting
Bangor, ME
Cable Yarding vs. Grapple Yarding

CY and GY DFCT with Multiple Stem Counts

- CY 2 Stems
- CY 3 Stems
- CY 4 Stems
- GY 2 Stems
- GY 3 Stems
- GY 4 Stems

Outhaul Distance (ft.) vs. DFCT (min.)
Productivity & Cost Comparison at 600’

CY and GY DFCT at 600’ w/Multiple Stems

No. Stems vs. DFCT (min.)

- CY
- GY
Productivity & Cost Comparison at 600’

CY and GY MBF/PMH at 600’ w/Multiple Stems

MBF/Hr

No. Stems

CY

GY
Productivity & Cost Comparison at 600’

[Graph showing CY and GY Unit Cost at 600’ with NY and MBF on the y-axis and No. Stems on the x-axis.]
What does this mean?

• More data needed for grapple yarding to determine better productivity estimates and ‘sweet spots’ for operating over traditional cable yarding
 • Hand cutting + cable yarding vs. tethered cutting + grapple yarding
• Worker hazard exposure
 • Different type and severity between the two, need to analyze and plan accordingly
• Grapple yarding has room for efficiency improvement
• If the systems are relatively similar in cost, how much is the added hazard reduction of removing chasers and chokersetters worth?
Take-Away Messages

• **Soils are complex, site conditions are important!**
• Ground pressures affect machine stability and soil disturbance.
• Use of cable assistance (and slash mat?) enables reduced ground pressures which provides:
 • Less soil displacement (slip and rutting)
 • Access to steeper slopes
 • Improved mobility
 • Improved stability
• Uphill orientation may be beneficial from a soil perspective due to better distribution of ground pressures.
Future Plans

• Assess worker response during feller-buncher operations
• Continue to measure shift-level productivity of felling and yarding as part of worker risk exposure
 • Mechanized felling (feller-buncher, grapple saw)
 • Extraction (tethered skidder)
• Compaction sampling of different carriers and effects of uneven terrain (road edges, etc.) and their creation of erosion/runoff channels
• Cable tension monitoring during mechanized felling and extraction to further explore a correlation between compaction and cable tension
• Development of guidelines and design criteria for new logging systems
 • New risks! Sliding, roll-over, loss of anchoring support, equipment immobilization, fire, etc.
THANK YOU! QUESTIONS?

PRESTON GREEN
OREGON STATE UNIVERSITY
preston.green@oregonstate.edu
http://ferm.forestry.oregonstate.edu/gradstudents/green-preston-q